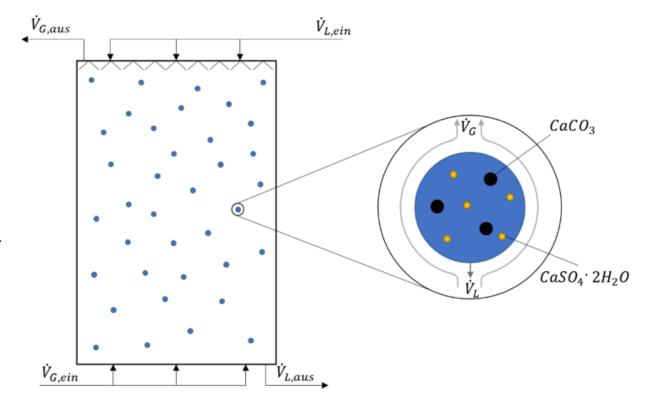


Martin Köhler, Mohammad Nader Alskaf Professur für Energieverfahrenstechnik (TU Dresden)

Absorptions- und Reemissionsvorgänge von Quecksilber in Wäschern zur Entschwefelung von Verbrennungsabgasen

3. Sitzung des Projektbegleitenden Ausschusses, 08.06.2021, online

Agenda


- 1. Kurzdarstellung des Modellansatzes
- 2. Plausibilitätsprüfung und erste Ergebnisse
- 3. Vorstellung der Ergebnisse erster orientierender Versuche
- 4. ggf. Diskussion

Modellansatz

- kugelförmige, gleich verteilte Tropfen mit einheitlicher Anfangsgeschwindigkeit und Anfangsrichtung
- Verringerung der Fallgeschwindigkeit in Abhängigkeit des entgegen strömenden Rauchgases
- Teilmodell für die Stoff- und Energiebilanzen der Komponente Wasser implementiert, aber noch nicht eingebunden
 - keine Veränderung der Tropfengröße
 - konst. Gastemp. und Gasgeschw.
- keine Berücksichtigung von Reaktionen im Wäschersumpf

• in jedem Tropfen entsteht die gleiche Anzahl von kugelförmigen Gipspartikeln mit einheitlicher Größe

Thermodynamisches Gleichgewicht

• direkte Minimierung der freien Enthalpie:

$$G(T, p, \{n_K\}) = \sum_{p}^{P} \sum_{i}^{K_p} n_i^{(p)} \mu_i^{(p)} = min$$

erste Nebenbedingung = Atomerhaltung:

$$\sum_{p}^{P} \sum_{i}^{K_{p}} n_{i}^{(p)} a_{ik} - A_{k} = 0 \qquad k = 1, E$$

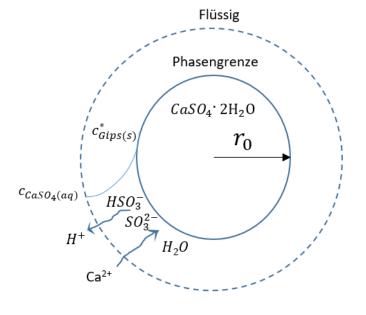
zweite Nebenbedingung = Elektroneutralität:

$$\sum_{i}^{K} n_{i}^{(l)} z_{i} = 0 \qquad l = 1, P_{el}$$

• Implementierung von zwei Varianten unter Berücksichtigung von reaktivem, nicht-reaktivem und inerten Sauerstoff [Luckas & Krissmann, 2001]

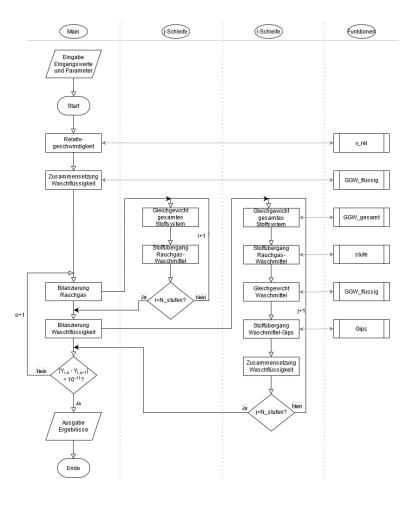
Stoffübergang

• Gas-Flüssig = Filmtheorie unter Nutzung des Henry-Gesetzes und des Enhancement-Faktors zur Berücksichtigung der chemischen Reaktion in der Flüssigphase:


$$\bar{n}_{i,n} = \frac{y_{i,n} - y_{i,n}^*}{\frac{M_l \cdot H_i}{E_{i,n} \cdot \beta_{i,l} \cdot \rho_l} + \frac{M_g}{\beta_{i,g} \cdot \rho_g}}$$

- Fest-Flüssig:
 - Stoffübergang nur für Gips-Bildung betrachtet, da Calciumcarbonat im Überschuss vorliegt und dessen Sättigung in der Flüssigphase zu jeder Zeit vorliegt

$$\bar{n}_{H^+,n} = \beta_{H^+,n} \cdot \left(c_{Gips}^* - c_{CaSO_4}(aq) \right)$$

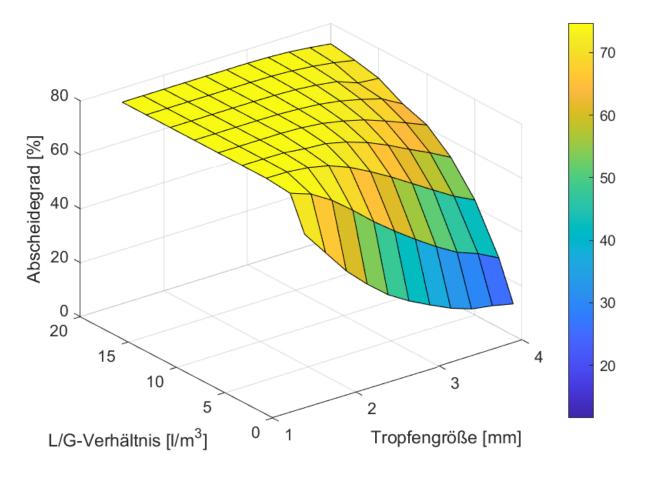

 \triangleright Berechnung von $\beta_{H^+,n}$ nach [Eden, 1998]

Programmablauf

Randbedingungen

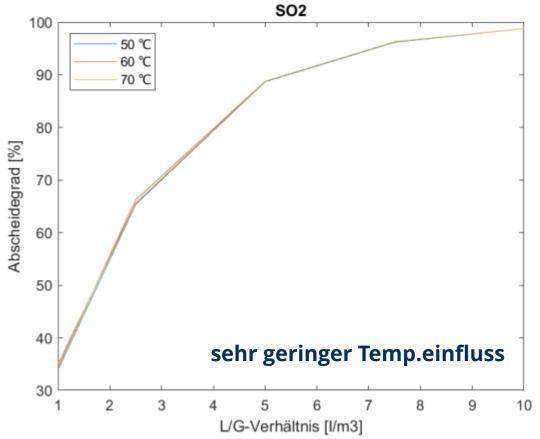
Soweit nicht anderweitig angegeben gilt:

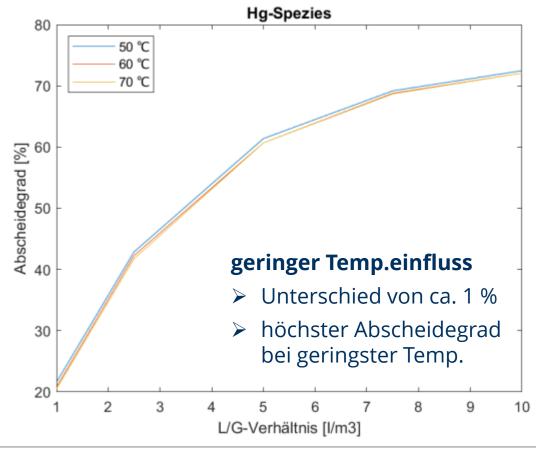
- Tropfendurchmesser = 4 mm
- L/G-Verhältnis = 1 l/m³
- "niedrige" Halogenidkonzentrationen
 - \rightarrow Cl⁻ = 0,03 mol l⁻¹
 - ightharpoonup Br- = 0,027 mmol l-1
 - $> I^- = 0.005 \text{ mmol } I^{-1}$
- "hohe" Halogenidkonzentrationen
 - ightharpoonup Cl⁻ = 0,5 mol l⁻¹
 - ightharpoonup Br- = 1,1 mmol l-1
 - $I^{-} = 0.15 \text{ mmol } I^{-1}$


• SO_2 -Rohgaskonzentration = 1500 µg/Nm³

Ergebnisse Plausibilität

- Variation von L/G-Verhältnis und Tropfengröße (Einflussgrößen vorrangig auf Übertragungsfläche)
- Annahme = 80 % des Hg als HgCl₂ im Rauchgas
- ➤ Hg⁰ wird nicht abgeschieden
- bei hohem L/G-Verhältnis und geringer Tropfengröße limitiert das chemische Gleichgewicht den Abscheidegrad

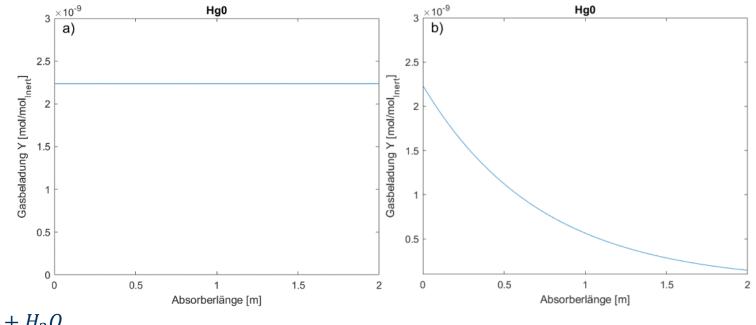




Ergebnisse

Temperatureinfluss

• Tropfengröße 3 mm und hohe Halogenidkonzentration in der Flüssigphase (keine HgBr₂/Hgl₂-Desorption)


Ergebnisse

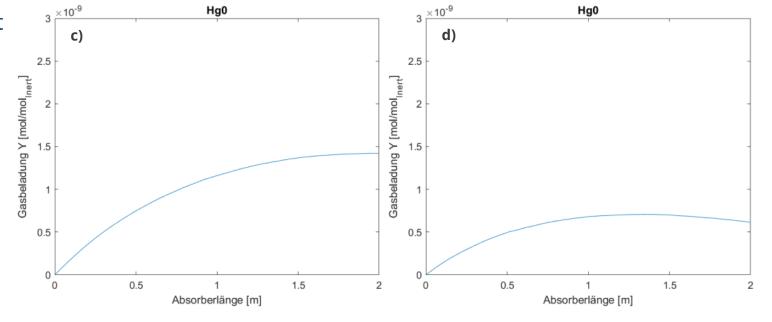
Redox-Verhalten – ohne SO₂

Hg als Hg⁰ ausschließlich in Gasphase, kein SO₂ in Gasphase

- a) Halogenfreies System (Gas- und Flüssigphase)
 - keine Absorption von Quecksilber
- b) HCl in hoher Konz. in Gasphase
 - Oxidation nach

$$Hg^0 + \frac{1}{2} O_2 + 2 HCl \rightleftharpoons HgCl_2 + H_2O$$

- > nach GGW möglich, aber bei den vorherrschenden Bedingungen kinetisch stark limitiert
- > der Realität nicht entsprechende Abnahme der Hg⁰-Konzentration in der Gasphase

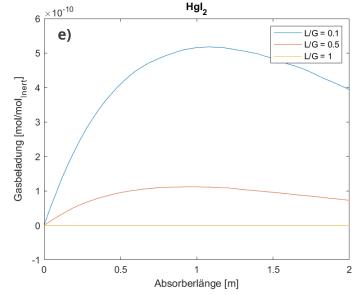


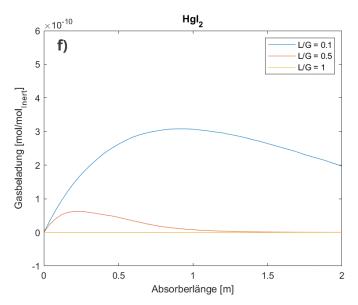
Ergebnisse

Redox-Verhalten – mit SO₂

Hg als HgCl₂ in Gasphase, Flüssigkeit im GGW mit SO₂ vorbeladen

- c) keine Halogene in Flüssigphase
 - Reduktion von HgCl₂ durch Sulfit- und Hydrogensulfit-Ionen
 - Reemission am gasseitigenAbsorberausgang
- d) wenig Halogene im System
 - ➤ Komplexierung des Hg²+ führt zu verminderter Reemission
 - bei weiterer Erhöhung der Halogenidkonzentration weitere Abnahme der Hg⁰-Emission bis auf Null




Ergebnisse

Redox-Verhalten – Einfluss von Komplexbildnern

Hg als HgCl₂ in Gasphase, Flüssigkeit im GGW mit SO₂ vorbeladen

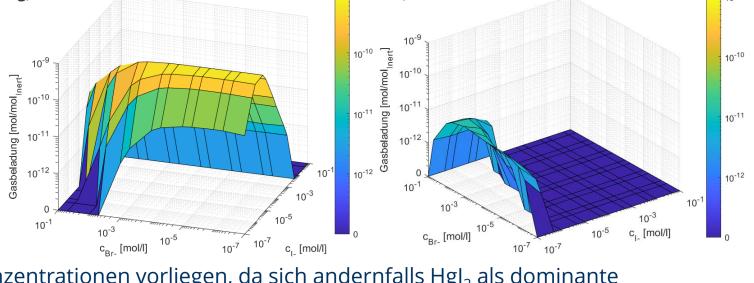
- e) $c_{Cl-,Br-,l-} = 1.10^{-5} \text{ mol/l}$
 - schnell ansteigende Reemission nach Gaseintritt
 - Absorption am Gasaustritt (in geringerem Umfang)
- f) $c_{Cl-,Br-,l-} = 2.10^{-5} \text{ mol/l}$
 - qualitativ ähnliches Ergebnis wie e)
 - Reemission insgesamt in geringerem Umfang
 - bei weiterer Erhöhung der Halogenidkonzentration weitere Abnahme der Hgl₂-Emission bis auf Null

Hgl

Ergebnisse

Redox-Verhalten – Einfluss von Komplexbildnern

Hg als $HgCl_2$ in Gasphase, Flüssigkeit im GGW mit SO_2 vorbeladen, L/G = 0,1 mol/mol


- g) Hgl₂-Gasbeladung
 - maximale Reemission bei mittleren Konzentrationen
- h) HgBr₂-Gasbeladung
 - Reemission in dieser Spezies

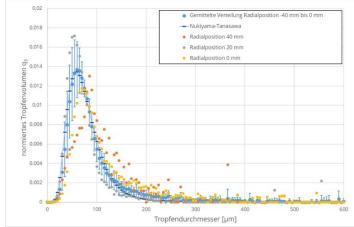
 Reemission in dieser Spezies

 Note

 No

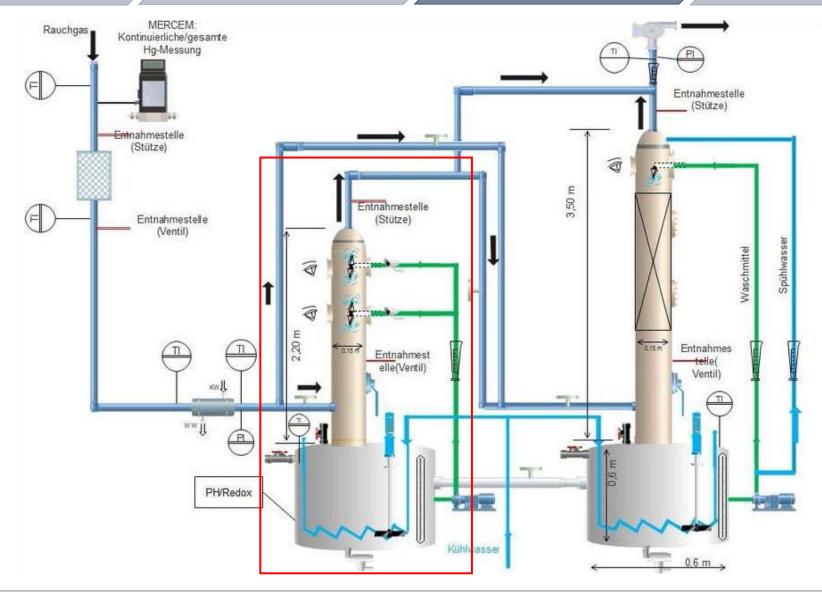
bei hohen Halogenidkonzentration keine Hgl₂/HgBr₂-Emission aufgrund Komplexbildung

h)



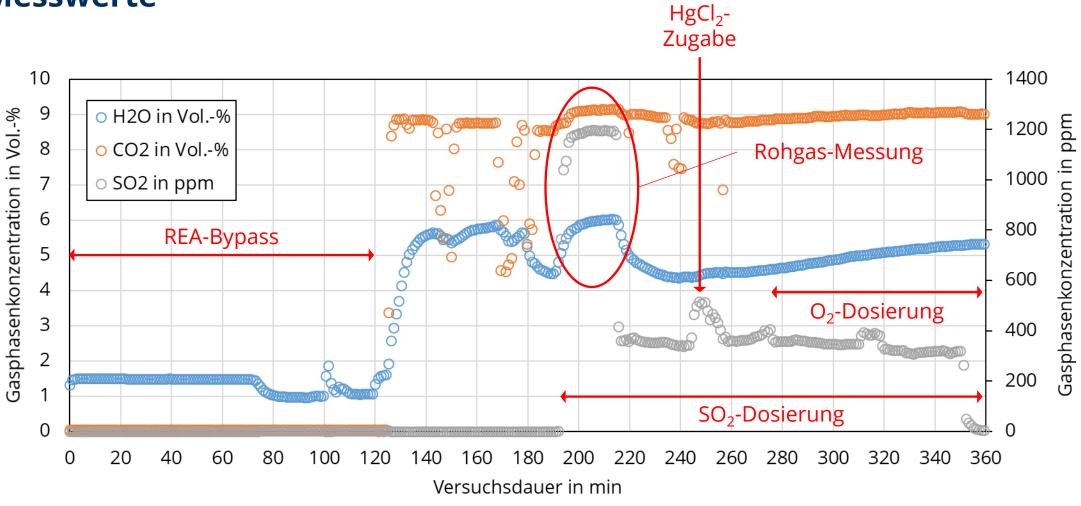
Ausblick

- vorhandenes Teilmodell für die Interaktion von Tropfen und Rauchgas durch das Einbeziehen von Energiebilanzen sowie der Stoffbilanz für die Komponente Wasser einbinden
 - ➤ Einfluss auf die Tropfengröße und -temperatur
 - > Einfluss auf die Stoffaustauschfläche
 - Einfluss auf die Konzentrationen der gelösten Spezies
 - ➤ Einfluss auf die Strömungsgeschwindigkeit des Rauchgases durch die Änderung der Gasdichte
- Aufprägung einer Tropfengrößenverteilung als Nukiyama-Tanasawa-Funktion auf Basis von Düsencharakterisierungen


nur für bestimmte Bereiche des Absorber, vor allem Rauchgaseintritt

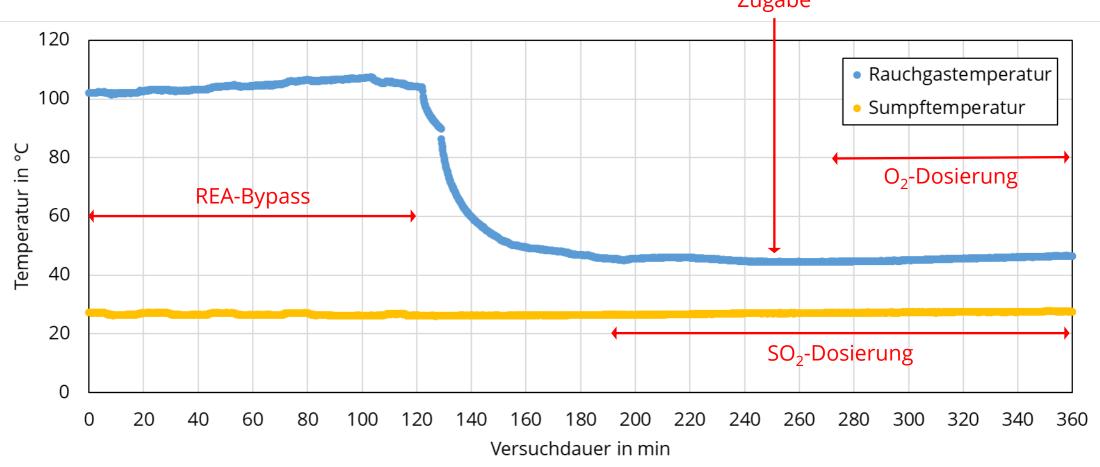
Aufbau

Randbedingungen


- Aufgrund der im ersten Quartal anhaltenden Einschränkungen waren Versuche erst ab April möglich.
- Ein Versuch konnte bislang ausgewertet werden!

- ➤ Gips-Suspension ca. 80 l mit ca. 12 Ma.-% Feststoffanteil
- Kalk-Suspension ca. 6 l mit ca. 10 Ma.-% Feststoffanteil
- Erdgasfeuerung ohne Dosierung von Additiven
- > Feststoffbeprobung am Versuchsende
- > punktuelle Zugabe von 500 ml HgCl₂-Lösung in den Wäschersumpf (c_{HgCl2} = 0,16 mg/l)
- > ca. 2,5 l/min O₂ als Oxidationsmittel direkt in den Sumpf eingedüst

Messwerte



Messwerte

Messwerte HgCl₂-Zugabe -100 SO₂-Dosierung **REA-Bypass** pH-Wert O₂-Dosierung pH -700

Versuchsdauer in min

-800

Redox

Ergebnis

- stationärer Zustand konnte nicht erreicht werden
- Redoxpotenzial und pH-Wert nicht im angestrebten Zielbereich
- keine Hg-Reemission in die Gasphase messbar
- Vergleich Hg-Zugabe und Hg-Analyse:
 - ➤ Hg-Gehalt in wässriger Phase der Gips-Suspension laut Analyse = 0,138 mg/l
 - > Hg-Gehalt in fester Phase der Gips-Suspension laut Analyse = 0,952 mg/l
 - ightharpoonup gesamtes Hg laut Analyse $m_{Hg,1} = c_s \cdot \left(m_{S,Gips} + m_{S,Kalk} \right) = 26,01 \text{ mg}$
 - > gesamtes Hg entsprechend der diskontinuierlich zugegeben Menge = 58,93 mg
 - ➤ Abweichung zwischen Analyse und Zugabe = 44 %
- Ursache für Abweichung wird aktuell noch geprüft.

Welche Anregungen haben Sie für die weitere Modellentwicklung und Versuche?

Vielen Dank für Ihre Aufmerksamkeit!

Dr.-Ing. Martin Köhler Technische Universität Dresden Institut für Verfahrenstechnik und Umwelttechnik Professur für Energieverfahrenstechnik Tel: +49 351 463 39502 Email: martin.koehler@tu-dresden.de

